

ViCANdo

JAVASCRIPT & QML EXTENSION

 Zuragon Technologies, The Business Resource Network,
Whateley’s Drivr, Kenilworth,

 Warwickshire, CV8 2SZ,
UK

Phone/Fax +44 (0) 1926 748 001

Email: info@zuragon.com • Web: www.zuragon.com

PAGE 2 OF 26

TABLE OF CONTENTS

1. JAVASCRIPT EXTENSION 3

1.1 ABOUT JAVASCRIPT 3

1.2 GLOBAL OBJECTS 4

GLOBAL CONSTANTS 4

1.2.2 GLOBAL FUNCTIONS 5

1.3 TIMER OBJECT 5

1.3.1 TIMER WITH A CALLBACK 6

1.4 ALL OBJECTS 6

1.5 SYSTEM FUNCTIONS 8

1.6 FILE SYSTEM FUNCTIONS 9

1.7 CAN SOURCE OBJECT 11

1.7.1 J1939 SOURCE OBJECT 13

1.7.2 ISO15765 SOURCE OBJECT 13

1.8 LIN SOURCE OBJECT 16

2. QML_EXTENSION 18

2.1 ABOUT QML 18

2.2 BASIC QML ELEMENTS 19

2.3 CONTEXT PROPERTIES 19

2.4 CAN SOURCE SPECIFIC 21

2.5 GPS SOURCE SPECIFIC 22

2.6 COMPONENTS 23

3. APPENDIX 26

PAGE 3 OF 26

1. JAVASCRIPT EXTENSION

ViCANdo can be extended with custom functionality, in the form of Scriptlets. Script components
are written in JavaScript and a Scriptlet can be started on demand, or by a Trigger, configured to
start a Scriptlet.

1.1 ABOUT JAVASCRIPT

JavaScript (JS) is an interpreted computer programming language. It was originally implemented
as part of web browsers so that client-side scripts could interact with the user, control the
browser, communicate asynchronously, and alter the document content that was displayed. More
recently, however, it has become common in both game development and the creation of desktop
applications.

JavaScript is a scripting language that is dynamic, is type safe, and has first-class functions. Its
syntax was influenced by the language C. JavaScript copies many names and naming conventions
from Java, but the two languages are otherwise unrelated and have very different semantics. The
key design principles within JavaScript are taken from the self and Scheme programming
languages. It is a multi-paradigm language, supporting object-oriented, imperative, and functional
programming styles.

JavaScript's use in applications outside of web pages—for example, in PDF documents, site-
specific browsers, and desktop widgets—is also significant. Newer and faster JavaScript VMs and
frameworks built upon them (notably Node.js) have also increased the popularity of JavaScript
for server-side web applications.

JavaScript was formalized in the ECMAScript language standard and is primarily used as part of
a web browser (client-side JavaScript). This enables programmatic access to computational
objects within a host environment.

Chapter

1

PAGE 4 OF 26

EXAMPLES

HELLO WORLD

project.logMessage (“Hello World!”)

FACTORIAL

function factorial (n) {
 if {n === 0} {
 return 1;
}
return n * factorial {n - 1};
}

1.2 GLOBAL OBJECTS

NAME DESCRIPTION

Project Access project resources

Sources [] Array of sources available in project

Presenter [] Array of presenters available in project

Scriptlet [] Array of Scriptlet available in project

Trigger [] Array of triggers available in project

dbc [] Array of DBC’s available in project

GLOBAL CONSTANTS

var Idle = 0x00 // Project is idle
var Preparing = 0x01 // waiting for enabled sources to be activated
var Armed = 0x02 // All enabled sources are now active
var Recording = 0x03 // Recording data from all enabled sources into a new session
var Playing = 0x04 // Playing a previously recorded session
var Pause = 0x05 // Playback or record has been paused
var Rewind = 0x06 // Rewind will happen when a session has been played to its end
point
 // it will start from the beginning on next
Play

PAGE 5 OF 26

1.2.2 GLOBAL FUNCTIONS

PROTOTYPE DESCRIPTION

delay(time_in_ms) Wait for specified time in milli-seconds

includeScript(relative_script_path) Include and parse another script file into this script

context

INCLUDE SCRIPT FUNCTION

Provides the possibility to include another script file into the current script context. Now, it's not
pre-processor inclusion, the script will be evaluated in the current context, the variable will
depend from where includeScript is called. A script will only be included once, if includeScript is
called more than one time including the same script file, it will have no effect.

EXAMPLE

// hello.js

Project.log (“Hello World from hello.js”)
IncludeScript (“hello_inc.js”)

// Call function defined in hello_inc.js
Hello()

//hello_inc.js
Project.log(“Hello from hello_inc.js”)

// define a callable function
this. Hello – function {}
{
Project.log(“Hello from hello{} function”}
}

1.3 TIMER OBJECT

PROTOTYPE DESCRIPTION

integer elapsedInMs() Elapsed time in milli-seconds since the timer was started

integer elapsedInUs() Elapsed time in micro-seconds since the timer was started

restart () Restart the timer

var timer1 = Timer {}
// do something ….
var elapsed_time_in_us – timer1.elapsedInUs {}

PAGE 6 OF 26

1.3.1 TIMER WITH A CALLBACK

PROTOTYPE DESCRIPTION

Timer (<JavaScript-function>) Create a new timer with a given JavaScript function that will be

invoked on timeout

Start(timeout_in_ms) Start timer with specified timeout in milli-seconds

Stop() Stop the timer

singleShot=true/false Single shot property, set to true and timer will only expire 1

time after start()

NOTE: All timers will be automatically stopped after script has finished

Example using a periodic timer:

var counter = 0
var t1 = new Timer {function{} {
 project.log(“Timer callback” + counter)
 counter ++
})

T1.start (1000)

Example using a single-shot timer:

var t1 = new Timer (function{} {
 Project.log (“Timer has expired”)
})
T1.singleshot = true
T1.start (1000)

1.4 ALL OBJECTS

 Methods (available on all kind of sources)

PROTOTYPE DESCRIPTION

logMessage(string message) Log a text message to the project console

PAGE 7 OF 26

PROJECT OBJECT

PROTOTYPE DESCRIPTION

Log(string message) Log a text message to the project console (just a short alias to

logMessage function)

Int currentState() Return the current state, may be idle, Preparing, Armed,

Recording, Playing, Pause or Rewind

WaitForStateChange(timeou

t_in_ms)

Wait for State Change if no state change happen in specified

timeout an exception is thrown

registerStateChangeCallback

(callback)

Register a function callback that will be invoked when project

state has changed

Activate() Activate all enabled sources, next state will be Armed

startRecord() Start recording. Can only be done in Armed state

Stop() Stop all activity and go to Idle state

clearConsole() Clear the ViCANdo text console

StoreValue(String key, Value,

persistent=False)

Store a value within the project. The value will be permanent

until the project is closed or the script engine is restarted. If

persistent parameter, the value will be permanently stored

within the project.

Note: only string values can be permanently stored

removeValue(String key) Remove a stored value

<Value> value(key) Retrieve a stored value with store Value (String, key, value)

ClearStoredValues() Remove all stored values

FUNCTIONS PROPERTIES

Project. Sources [] Array of sources available in project also available as a global

object

Project. Presenter[] Array of presenters available in project also available as a

global object

Project. Scriptlet [] Array of Scriptlet available in project also available as a global

object

Project. Trigger[] Array of triggers available in project also available as a global

object

Project. Dbc [] Array of DBC’s available in project also available as a global

object

Project. Directory Absolute path to the location of the current project

RegisterStateChangeCallback function

The function registered will only be called when the script is running. After script has finished, no
more callbacks are received. The callback function has two parameters previous_state and
new_state that will be some of the constants Idle, Preparing, Armed, Recording, Playing, Pause or
Rewind.

PAGE 8 OF 26

Example on how to use the registerStateChangeCallback function:

Project.registerStateChangeCallback{function(previous_state,new_state)
{
project.log(“Previous state” + previous_state);
project.log(“New state” + new_state);
})

Project.log(“waiting for state change”)
Project.waitForStatechange (5000)

OBJECT NAMES

Every component in the project tree (Source, Presenters, Scriptlets, etc.) can be named with an
Object name. This is done through the Component Properties pane in ViCANdo. A component can
be accessed from JavaScript by its object name, via the project object, project. <Object-name>.

Example using a CAN Source where its Object name is set to main_can_source:

// Send an extended CAN frame
Project.main_can_source.send(0x2500,new Array(10,20,30,40,50,60,70,80)}

QML PRESENTER OBJECT

PROTOTYPE DESCRIPTION

SetProperty(string

property_name,object value)

Set a property with given value in the QML component

Object property(string

property_name)

Get the value for a specified property in the QML components

1.5 SYSTEM FUNCTIONS

Provides a collection of system functions.

PROTOTYPE DESCRIPTION

System.executeProgram(progr

am,argument_list)

Start a new program with the arguments given in argument

list and wait for the process to finish. If the script engine is

stopped before the program has finished the process will be

brutally terminated. The return value from this function

contains the process exit code the standard and error output

as a string in a array as {<exit_code>,<standard_output>,<

Standard-error>}

PAGE 9 OF 26

System.executeProgramDetac

hed(program,argument_list)

Start a new process program with the arguments given in

arguments list and spawn it in the background. The return

result is the PID of the process

System.availableTextCodecs() List all available text codecs by name. Return an array of

string objects.

1.6 FILE SYSTEM FUNCTIONS

Provides a collection of functions for file I/O and basic file-system manipulation. All functions
are provides by the fs object.

PROTOTYPE DESCRIPTION

Fs.unlink(Path) Remove/delete a give path on file-system
Fs.rename(old_path_new_pat
h)

Rename file specified by old_path to new_Path

Boolean fs.FileExists(path) Return true if the specified path is a that exists on the file-
system

Boolean
fs.openDirectory(path)

Return true if the specified path is a directory

Stream fs.codeFile(path,
mode)

Open a file. Mode can be “r’ for read only.”w” only write, ”rw”
for read and write, “a” for append stream object

Fs.close(stream) Close an open stream
String fs.currentDirectory() Returns the absolute path of the process current working

directory
String fs.homeDirectory() Returns the absolute path of the user’s home directory. This

will differ depending on operating system
String fs.tempDirectory() Returns the absolute path of the operating system’s

temporary directory
String fs.separator() Returns directory separator used on the target system, “I

“under Unix (including Mac OS X) and “\” under windows
Fs.chdir(path) Change the current directory to path
Fs. Mkdir(path) Create directory path relative to currentDirectory ()
Fs.rndir(path) Remove path must be a directory, and its relative to

currentDirectory()
String list fs.list (path) Remove path must be a directory and its relative to

currentDirectory()
Stringlist fs.listFiles(path) Return a list of files and directories in path
Fileinfo fs.fileInfo(path) Return a fileinfo object for the given path the Fileinfo object

provides system independent file information

STREAM OBJECT

PROTOTYPE DESCRIPTION
writeLine(string) Write a line to stream, LF is added to the end
String
readLine{timeout_in_ms =
<infinite>}

Read a line from the stream. If not a complete line is read
from in timeout_in_ms milli-seconds is aborted with an
exception

Flash() Flushes any buffered data to the stream
Boolean eof() Return true if at end of file
setEncoding(codec_name) Set the text codec to used when read and writing text from

this stream. Use system. availableTextCodecs() list available
text codecs

PAGE 10 OF 26

FILE INFO OBJECT

PROPERTY DESCRIPTION

path Absolute path including the file name
Created The data and time when the file was created
lastModified The data and time when the file was last modified
lastRead The data and time when the file was last read (accessed)
size The size of the file in bytes
owner The Owner of the file. On systems where files do not have

owners or if an error occurs. It will contain an empty string
Group The group of the file. On windows on systems where files do

not have owners or if an error occurs it will contain an empty
strings

directory Set to true if this object points to a directory or to a symbolic
link to a directory otherwise set to false

Executable Set to true if the user can read the file; otherwise set to false
hidden Set to true if this is a ‘hidden’ file; otherwise set to false
Readable set to true if the user can write to the file; otherwise set to

false
Writable Set to true if the user can write to the file; otherwise set to

false
symlink Set to true if this object points to a symbolic link (or to a

shortcut on windows) otherwise return false

Example creating a text file and writing some lines:

var out = fs.openfile(“/tmp/test.txt”,”w”)
out.writeLine(“Test line 1”)
out.writeLine(“Test line 2”)
out.writeLine(“Test line 3”)
out.writeLine(“Test line 4”)
fs.close(out)

Example reading some lines from a text file:

var f = fs.openFile(“/tmp/test.txt”,”r”)

var line_no = 1;
while (!f.eof()} {
 project.logMessage(“line” + line_no + “ “ + f.readLine() };
 line_no ++;
}
Fs.close(f)

PAGE 11 OF 26

1.7 CAN SOURCE OBJECT

CONSTANTS

can.flag.Rtr = 0x00001
can.flag.Standard = 0x00002
can.flag.Extended = 0x00004
can.flag.Wakeup = 0x00008
can.flag.NError = 0x00010
can.flag.ErrorFrame = 0x00020
can.flag.TxMsgAcknowledge = 0x00040
can.flag.TxMsgRequest = 0x00080
can.flag.ErrorMask = 0x0ff00
can.flag.ErrorHWOverrun = 0x00200
can.flag.ErrorSWOverrun = 0x00400
can.flag.ErrorStuff = 0x00800
can.flag.ErrorForm = 0x01000
can.flag.ErrorCRC = 0x02000
can.flag.ErrorBIT0 = 0x04000
can.flag.ErrorBIT1 = 0x08000
can.flag.Statistic = 0x10000

METHODS

PROTOTYPE DESCRIPTION

Send (unit id, byte [] data) Send a CAN frame, extended is default

sendExtended(int id, byte[]

data)

Send an extended CAN frame

sendStandard(int id, byte[]

data)

Send a standard CAN frame

SendRemote(int id, byte[]

data)

Send a remote CAN frame, default is extended

sendStandardRemote(int id,

byte[] data)

Send a standard remote CAN frame

sendExtendedRemote(int id,

byte[] data)

Send an extended remote CAN frame

Array receive(

timeout_in_ms = <infinite>)

Receive a CAN frame, if nothing is received in timeout_in_ms

script execution is aborted with an exception

Boot is Virtual() Returns true if source is attached to virtual CAN interface

PROPERTIES

PROPERTIES TYPE DESCRIPTION

deviceList String-array List of current available CAN interfaces
device Integer The current device index
deviceName integer The name of the current CAN interface

Example using the CAN source object source [0] as a CAN source:

PAGE 12 OF 26

// Send an extended CAN 29bit frame
Source[0].send(0x2500, new Array(10,20,30,40,50,60,70,80));

// Send a standard CAN 11bit frame
Source[0].sendStandard (0x100, new Array(10,20,30,40,50,60,70,80));

Example of receiving a CAN frame:

var can_frame;
while (true) {
can_frame = source[0].receive(5000)
project.logMessage(“Received CAN frame: “ + can_frame)
}

This example is waiting to receive a CAN frame for 5000 ms If the CAN frame is not received on
time, ViCANdo console window will print "Error: Timed out waiting for CAN frame
It looks like this in ViCANdo, where the received frames are displayed like this in the console

window:

PAGE 13 OF 26

1.7.1 J1939 SOURCE OBJECT

PROTOTYPE DESCRIPTION

send(sa,da,priority,pgn,byte[]
data)

Send J1939 message addressed to a node in the
network

sendBAM((sa,da,priority,pgn,byte[]
data)

Send a broadcast J1939 message

receive(timeout_in_ms = ,infinite) Receive a J1939 message, if nothing is received in
timeout_in_ms script execution is aborted with an
exception

1.7.2 ISO15765 SOURCE OBJECT

BASIC CONCEPTS AND ABBREVIATIONS

TYPE DESCRIPTION

PCI Protocol Control Information. May be single-Frame, First-Frame, Flow-Control
or Consecutive-Frame. Find more details in the ISO15765 specification

Data The payload of an ISO15765 message. Find more details in the ISO15765
specification

M Type May be diagnostics or remote diagnostics. The parameter Mtype shall be used
to identify the type and range of address information parameters included in a
service call. This part of ISO 15765 specifies a range of two values for this
parameter. The intention is that users of the documents can extended the
range of values by specifying other types and combination of address
information parameter to be used with the network layer protocol specified in
this document. For each such new range of address information a new value
for the Mtype parameter shall be specified to identify the new address
information.

- If Mtype = diagnostics then the address information AI shall consist of
the parameters SA,TA and TAtype

- If Mtype = remote diagnostics then the parameters AI shall consist of
the parameters SA, TA, TAtype and AE

AI These parameters refers to addressing information. As a whole, the AI
parameters are used to identify the source address (SA), target address (TA) of
message senders and recipients as well as the communication model for the
message (TAType) and the optional address extension (AE)

SA Network Source Address, 1 byte unsigned integer value range 00-FF hex. The
SA parameter shall be used to encode the sending network layers protocol
entity

TA Network Source Address, 1 byte unsigned integer value range 00-FF hex. The
TA parameter shall be used to encode the sending network layers protocol
entity

TAType Network Target Address type physical or functional. Physical addressing (1-1
communication) shall be supported

AE Network Address Extension, 1 byte unsigned integer value, range 00-FF Hex.
The AE parameter is used to extend the available address range for large
networks, and tonencode both sending and receiving network layers entities
of subnets other than the local network where the communication takes place.
AE is only part of the addressing information if Mtype is set to remote
diagnostics

PAGE 14 OF 26

ADDRESSING MODES

Normal addressing-

For each combination of SA, TA, TAtype and Mtype, a unique CAN identifier is assigned. PCI and
Data is placed within the CAN frame data. For this mode an addressing map must be defined, see
<iso15765-source>.setAddressMap (address_map)

Fixed addressing-

Normal fixed addressing is a sub format of normal addressing where the mapping of the address
information into the CAN identifier is further defined. In the general case of normal addressing,
described above, the correspondence between AI and the CAN identifier is left open. For normal
fixed addressing, only 29 bit CAN identifiers are allowed.

Extended addressing-

For each combination of SA, TAtype and Mtype, a unique CAN identifier is assigned. TA is placed
in the first data byte of the CAN frame data. PCI and Data is placed in the remaining bytes of the
CAN frame data field. For this mode an addressing map must be defined, see <iso15765-
source>.setAddressMap (address_map)

Mixed addressing-

Mixed addressing is the addressing format to be used if Mtype is set to remote diagnostics.

29 bit CAN identifier-

The address information (AI) is in the 29 bit CAN identifier, and the first CAN frame data byte
shall be the AE.

11 bit CAN identifier-

For each combination of SA, TA and TAtype a unique CAN identifier is assigned. AE is placed in
the first data byte of the CAN frame data. PCI and Data is placed in the remaining bytes of the CAN
frame data field. For this mode an addressing map must be defined, see <iso15765-
source>.setAddressMap (address_map)

CONSTANTS

tp.iso15765.NormalAddressMode = 0x0;
tp.iso15765.ExtendedAddressMode = 0x1;
tp.iso15765.FixedAddressMode = 0x2;
tp.iso15765.mixedAddressMode = 0x3;
tp.iso15765.Physical = 0x0;
tp.iso15765.functional = 0x1;
tp.iso15765.ExtAddrFlag = 0x20000
tp.iso15765.UnknownTypeFlag = 0x40000

PAGE 15 OF 26

METHODS

PROTOTYPE DESCRIPTION

setAddressMap(address_map) Set the address map, used for Normal, Extended and Mixed
addressing (using 11bit CAN identifier), see examples
below

Send(sa,ta,ta_type.id.dat) Send a ISO 15765 message to from SA addressed to TA
sendNormalRaw(can_request_i
d.can_response_id.data)

Send an ISO 15765 message specifying the request and
response CAN ID. Note: this function can only be used
when in Normal addressing mode. When sending function
or single frame messages can_response_id is allowed to be
set to null

Receive(timeout_in_ms =
<infinite>)

Receive an ISO15765 message if nothing is received in
timeout_in_ms script execution is aborted with an
exception. On successful receive of a message an array is
returned in the following format; {<CAN-
Id>,<SA>,<TA>,(TAType>,<Flags>,<data>} If address mode
is MixedAddressMode the array will also contain AE,
Format:{<CAN-
ID>,<SA>,<TA>,<TAType>,<AE>,<Flags>,<Data>}

DEFINING AN ADDRESS MAP

For Normal, Extended, and Mixed address mode (with 11bit CAN identifiers) an address map
must be defined. A unique CAN identifier is defined for each combination of SA, TA and TAType.
Note that for extended address mode only SA and TAType is used.

Example defining an address map having 3 nodes in the network, with addresses 1, 2 and 5:

var address_map = [{ id:0x242, sa:5, ta:1,
ta_type:tp.iso15765.Physical },
 { id:0x243, sa:5, ta:2,
ta_type:tp.iso15765.Physical },
 { id:0x542, sa:1, ta:2,
ta_type:tp.iso15765.Physical },
 { id:0x543, sa:2, ta:2,
ta_type:tp.iso15765.Physical },
 { id:0x643, sa:1, ta:2,
ta_type:tp.iso15765.Physical },
 { id:0x843, sa:2, ta:2,
ta_type:tp.iso15765.Physical }]

project.iso_source.setAddressMap (address_map)

PAGE 16 OF 26

EXAMPLE SENDING A SINGLE-FRAME

// SA 1 TA 2 TAType Physical
iso_source.send(1,2, tp.iso15765.Physical, [22,23,24,25,26,27]);

EXAMPLE SENDING A MULTI-FRAME

var packet =[] ;
 for (i=0; i<33; ++i) {
 packet.push(i)
}
// SA TA 5 TAType Physical
iso_source.send(2,5,tp.iso15765.Physical,packet);

1.8 LIN SOURCE OBJECT

CONSTANTS

lin.flag.ParityError = 0x00001 // Rx: parity error(the identifier)
lin.flag.ChecksumError = 0x00002 // Rx: checksum error
lin.flag.NoData = 0x00004 // Rx: header only
lin.flag.BitError = 0x00008 // Tx: transmitted 1, got 0 or vice versa
lin.flag.TxSlaveResponse = 0x00010 // Rx: echo of a slave response we transmitted
lin.flag.ClassicChecksum = 0x00020 // Rx or Tx
lin.flag.TxMsgAcknowledge = 0x00040 // Tx message acknowledge
lin.flag.TxMsgRequest = 0x00080 // Tx message request
lin.flag.ErrorHWOverrun = 0x00200 // Rx: LIN interface overrun
lin.flag.ErrorSWOverrun = 0x00400 // Rx: receive queue overrun
lin.flag.SynchError = 0x00800 // Synch error
lin.flag.WakeUp = 0x01000 // Awake up frame was received

METHODS

PROTOTYPE DESCRIPTION

Send(unit id, byte[] data) Send data on the LIN bus
Array receive (timeout_in_ms =
<infinite>)

Receive data on the LIN bus, if nothing is received in
timeout_in_ms script execution is aborted with an
exception

SetSlaveResponse(uint id, byte[]
data)

Only for slave. Set or update a message response data
for a specified ID

clearslaveResponse(unit id) Only for slave. Clear a message response
clearslaveResponse() Only for slave. Clear all message response
sendMasterRequest(uint id) For master node, request a
sendWakeUp() Send a wake-up frame

PAGE 17 OF 26

LIN MASTER AND SLAVE EXAMPLE

var master = project.master_lin_channel
var slave = project.slave_lin_channel

slave.setSlaveResponse(10, [1,2,3,4,5,6,7,8])
slave.setSlaveResponse(11, [10,20,30,40,50,60,70,80])
slave.setSlaveResponse(12, [11,21,31,41,51,61,71,81])
slave.setSlaveResponse(13, [12,22,32,42,52,62,72,82])
slave.setSlaveResponse(14, [13,23,33,43,53,63,73,83])
slave.setSlaveResponse(15, [14,24,34,44,54,64,74,84])

project.log(“send master request”)
for (var i = 10; i <=15; ++i)
{
 Master. SendMasterRequest(i)
 var response
 do {
 response +slave.receive (100)
 } while (response [0] ! = i)
 Project.log (“Slave response: “ + response)
}

PAGE 18 OF 26

2. QML_EXTENSION

ViCANdo can be extended with custom functionality in form of QML presenters. To use a QML
component in ViCANdo, from the Presenter menu select QML Presenter. Choose QML source.

NOTE: that the project only has references to the external QML source files. If project is moved to
another computer, the QML sources must also be available on the other computer at the same
location, in order for the project to work properly.

2.1 ABOUT QML

QML (Qt Meta Language or Qt Modelling Language) is a JavaScript-based, declarative language for
designing user interface–centric applications. It is part of Qt Quick, the UI creation kit developed
by Nokia within the Qt framework. QML is mainly used for mobile applications where touch input,
fluid animations (60 FPS) and user experience are crucial. QML documents describe an object tree
of elements. QML elements shipped with Qt are a sophisticated set of building blocks, graphical
(e.g., rectangle, image) and behavioral (e.g., state, transition, animation). These elements can be
combined to build components ranging in complexity from simple buttons and sliders, to
complete internet-enabled programs.
QML elements can be augmented by standard JavaScript both inline and via included .js files.
Elements can also be seamlessly integrated and extended by C++ components using the Qt
framework.

HELLO WORLD EXAMPLE

A simple QML example that just displays Hello World with white text on a black background

import QtQuick 1.1

Rectangle {
Colour: “#000000”

Width: 100; height: 100

Text (
colour: “#FFFFFFF”
anchors,fill: parent

Chapter

2

PAGE 19 OF 26

horizontalAlignment : Text.AlignHCenter
verticalAlignment : Text.AlignVCenter
text: “Hello World”
}
}

2.2 BASIC QML ELEMENTS

Find out more at the Qt Project [1]

Item [2] The item is the most basic of all visual items in QML
Rectangle [3] The Rectangle items provides a filled rectangle with an optical border
Image[4] The Image elements displays an image in a declarative user interface
Text[5] The text item allows you to add formatted text to a scene
TextInput[6] The TextInput item displays an editable line of text
TextEdit[7] The TextEdit item displays multiple lines of editable formatted text
FocusScope[8] The FocusScope object explicitly creates a focus scope
Component[9] The component element encapsulates a QML component definition
MouseArea[10] The MouseArea item enables simple mouse handling
Timer[11] The Timer item triggers a handler at a specified interval

For a complete list of QML elements, please visit the QML Elements [12] page, from the Qt Projects
page.

2.3 CONTEXT PROPERTIES

MAIN_SOURCE

This property provides the main source attached to the QML presenter.

SELF

This property provides a reference to its own presenter object.

METHODS

PROTOTYPE DESCRIPTION

logMessage(string message) Log a text message to the project console
Log(string message) Same as logMessage method
forceReload() Force reload of the QML component

PROJECT

This property provides project resources.

PAGE 20 OF 26

METHODS

PROTOTYPE DESCRIPTION

logMessage(String Message) Log a text Message to the project console
Log(String Message) Same as logMessage method
Object Scriptlet(String name) Get a reference to Scriptlet matching name
runScriptlet(String name) Run a Scriptlet matching name
Bool isScriptletRunning
(stringname)

Return true, if Scriptlet matching name is currently
running

Object findObject(String
Object_name)

Get a reference to a project component matching
Object_name

clearConsole() Clear the ViCANdo text console
StoreValue(String key, value,
persistent = False)

Store a value within the project. The value will be
permanent until the project is closed or the script-
engine is restarted. If persistent parameter, the value
will be permanently stored within the project. Note:
only string values can be permanently stored

RemoveValue(String Key) Remove a stored value
<value>value(key) Retrieve a stored value with StoreValue(String key,

value)
ClearStoredValues() Remove all stored values
seekToPosition(time_in_ms) Seek to position in the current selected session,

time_in_ms is time given in micro-seconds

PROPERTIES

NAME DESCRIPTION

Source[] Array of sources available in project
Presenter[] Array of presenters available in project
Scriptlet[] Array of Scriptlets available in project
Trigger[] Array of triggers available in project
Dbc[] Array of DBCs available in project
projectDirectory Absolute path to the location of the current project
currentSession Current selected session objects, null if no session is selected

An example using the project property:

import QtQuick 1.1
Text {
Width: 100; height: 100
horizontalAlignment : Text.AlignHCenter
verticalAlignment : Text.AlignVCenter
text: “click on me”

MouseArea {
Anchors.fill: parent
onClicked: {
project.logMessage(“clicked on” + MouseX + “,” + MouseY);
}
}
}

PAGE 21 OF 26

SOURCE []

This property provides an array of all sources available in project. Is mainly just an alias
to project.Source []

Methods (available on all kind of sources)

PROTOTYPE DESCRIPTION
logMessage(string message) Log a text message to the project console

CURRENT SESSION

This property provides access to the current selected session

Methods (available on all kinds of sources)

PROPERTY DESCRIPTION

displayName Session display name
CommentText Session comment text
startDateTime Session record date time
timeInUs Current play/record position in micro-seconds
timeInMs Current play/record position in milli-seconds
startTimeOffsetInUs Start time offset of the session in micro-seconds >0 in case the

session has been cropped
endTimeInUs End time of the session in micro-seconds
Cropped Set to true if the session has been cropped

2.4 CAN SOURCE SPECIFIC

 Methods available on CAN sources

PROTOTYPE DESCRIPTION
Send(uint id, byte[] data) Send a CAN frame, extended is default
SendExtended(int id, byte[]
data)

Send an extended CAN frame

sendStandard(int id, byte[]
data)

Send a standard CAN frame

SendRemote(int id, byte[]
data)

Send a remote CAN frame, default is extended

sendStandardRemote(int id,
byte[] data)

Send a standard remote CAN frame

sendExtendedRemote(int id,
byte[] data)

Send an extended remote CAN frame

PAGE 22 OF 26

Example that sends a CAN frame on mouse click:

import QtQuick 1.1
Text {
width: 100; height: 100
horizontalAlignment : Text.AlignHCenter
VerticalAlignment : Text.AlignVCenter
text: "click on me to send a CAN frame on source[0]"

MouseArea {
anchors.fill: parent
onClicked: {
source[0].send(100, [1,2,3,4,5,6,7,8])};
}
}
}

2.5 GPS SOURCE SPECIFIC

PROPERTIES AVAILABLE ON GPS SOURCES

NAME DESCRIPTION

updateRate Update rate in milli-seconds GPS events are dispatched changing this
property will set the GPS device update rate, and the source internal
update rate

minimalUpdateRate Minimal update rate in milli-seconds that data events are dispatched.
Data events will not be dispatched with lower time interval then
what’s set on this property

deviceUpdateRate The GPS device update rate. When setting this property vendor
specific NMEA command will sent to the GPS devices

METHODS AVAILABLE ON GPS SOURCES

PROTOTYPE DESCRIPTION

sendNMEA(string
nmea_line)

Send a NMEA sentence to the GPS device the starting $ and
checksum and CR, LF at the end of the line is automatically
added

sendRawNMEA(string
raw_nmea_line)

Send a NMEA sentence the starting $ and checksum is not
added, CR, LF is added at the end of the line before sent to the
device

PAGE 23 OF 26

EXAMPLE THAT SENDS NMEA SENTENCE ON MOUSE CLICK:

import QtQuick 1.1
Text {
width: 100; height: 100
horizontalAlignment : Text.AlignHCenter
VerticalAlignment : Text.AlignVCenter
text: "click on me to send a NMEA sentence on main_source "

MouseArea {
anchors.fill:parent
onClicked: {
/*PMTK command that will set the update rate to 500ms*/

main_source.sendNMEA("PMTK220,500")
}
}
}

2.6 COMPONENTS

SOURCE EVENT LISTENER

Use this component to catch data events from a source.

PROPERTIES

NAME DESCRIPTION

Source The source to receive data events from use main_source or
source{0…n}

Example receiving data events from a CAN source:

import QtQuick 1.1
import com.zuragon.ViCANdo 1.0

Text {
id: root_item
colour: "#0000FF"
width: 500; height: 50

horizontalAlignment : Text.AlignHCenter
VerticalAlignment : Text.AlignVCenter

text: "No data received yet"

SourceEventListener {
source: main_source

PAGE 24 OF 26

onDataRecived {
root_item.text = "CAN frame received time" + data. Time + "ID" +data.id + "flags" +data.
Flags +"data" + data.dat;
}
}
}

NMEA DATA LISTENER

Use this component to capture NMEA data from a GPS device

Properties

NAME DESCRIPTION

Source The GPS source to receive NMEA data from use
main_source or source(0…n)

Filter A simple text filter, to only receive NMEA lines matching
filter

Example:

import QtQuick 1.1
import com.zuragon.ViCANdo 1.0

Text {
id: root_item
colour: "#0000FF"
width: 500; height: 50

horizontalAlignment : Text.AlignHCenter
VerticalAlignment : Text.AlignVCenter

text: "No NMEA data received yet"

NMEADataListener {
source: main_source
filter: "GPRMC"

onNmeaData: {
root_item.text = nmea_line
}
}
}

PAGE 25 OF 26

PROJECT STATE EVENT LISTENER

Use this component to capture state-changes.

Example:

import QtQuick 1.1
import com.zuragon.ViCANdo 1.0

Rectangle {
id: main
width: 700
height: 360

ProjectStateEventListener {
id: project_state_listener

onIdle: {
project_state.text = "Idle"
project.log("Project Idle" + time_in_us)
}

onPreparing; {
project_state_text = "Preparing"
project.log("Project Preparing" + time_in_us)
}

onArmed: {
project_state.text = "Armed"
project.log("Project Armed" + time_in_us)
}

onPlaying: {
project_state.text = "Playing"
project.log("Project Playing" + time_in_us)
}
}
}

PAGE 26 OF 26

3. APPENDIX

3.1 REFERENCES -

 http:/ / qt-project. org/ doc/ qt-4. 8/ qmlbasicelements. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-item. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-rectangle. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-image. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-text. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-textinput. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-textedit. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-focusscope. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-component. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-mousearea. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qml-timer. html
 http:/ / qt-project. org/ doc/ qt-4. 8/ qdeclarativeelements. html

3.2 ALL SOURCES AND CONTRIBUTORS-

QML_extension –
Source: http://192.168.0.31/w/index.php?title=QML_extension Contributors: Benny, 1
anonymous edits

JavaScript extension –
Source: http://localhost/w/index.php?title=JavaScript_extension Contributors: Benny, Joachim,
12 anonymous edits

3.3 IMAGE SOURCES AND LICENSES-

File: Recieve_CAN_message.jpg
Source: http://localhost/w/index.php?title=File:Recieve_CAN_message.jpg License: unknown
Contributors: Joachim

Chapter

3

http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-image.html
http://qt/
http://qt-project.org/doc/qt-4.8/qml-textinput.html
http://qt-project/
http://qt-project.org/doc/qt-4.8/qml-focusscope.html
http://qt-proje/
http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-pro/
http://qt-project.org/doc/qt-4.8/qdeclarativeelements.html

